Determination of Friction-Wear Performance and Properties of Eco-Friendly Brake Pads Reinforced with Hazelnut Shell and Boron Dusts

13 Apr.,2023

 

  1. El-Tayeb, N.; Liew, K.: On the dry and wet sliding performance of potentially new frictional brake pad materials for automotive industry. Wear 266(1), 275–287 (2009)

  2. Fan, Y.; Matějka, V.; Kratošová, G.; Lu, Y.: Role of \({\rm Al}_{2}{\rm O}_{3}\) in semi-metallic friction materials and its effects on friction and wear performance. Tribol. Trans. 51(6), 771–778 (2008)

  3. Liew, K.; Nirmal, U.: Frictional performance evaluation of newly designed brake pad materials. Mater. Des. 48, 25–33 (2013)

  4. Ertan, R.; Yavuz, N.: An experimental study on the effects of manufacturing parameters on the tribological properties of Brake Lining materials. Wear 268(11), 1524–1532 (2010)

  5. Hee, K.; Filip, P.: Performance of ceramic enhanced phenolic matrix brake lining materials for automotive brake linings. Wear 259(7), 1088–1096 (2005)

  6. Kumar, M.; Bijwe, J.: Studies on reduced scale tribometer to investigate the effects of metal additives on friction coefficient-temperature sensitivity in brake materials. Wear 269(11), 838–846 (2010)

  7. Hjortenkrans, D.; Bergbäck, B.; Häggerud, A.: New metal emission patterns in road traffic environments. Environ. Monit. Assess. 117(1–3), 85–98 (2006)

  8. Menapace, C.; Leonardi, M.; Perricone, G.; Bortolotti, M.; Straffelini, G.; Gialanella, S.: Pin-on-disc study of brake friction materials with ball-milled nanostructured components. Mater. Des. 115, 287–298 (2017)

  9. Hong, U.; Jung, S.; Cho, K.; Cho, M.; Kim, S.; Jang, H.: Wear mechanism of multiphase friction materials with different phenolic resin matrices. Wear 266(7), 739–744 (2009)

  10. Chan, D.; Stachowiak, G.: Review of automotive brake friction materials. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 218(9), 953–966 (2004)

  11. Jacko, M.; Tsang, P.; Rhee, S.: Automotive friction materials evolution during the past decade. Wear 100(1–3), 503–515 (1984)

  12. Idris, U.; Aigbodion, V.; Abubakar, I.; Nwoye, C.: Eco-friendly asbestos free brake-pad: using banana peels. J. King Saud Univ. Eng. Sci. 27(2), 185–192 (2015)

  13. Lazim, A.M.; Kchaou, M.; Hamid, M.A.; Bakar, A.A.: Squealing characteristics of worn brake pads due to silica sand embedment into their friction layers. Wear 358, 123–136 (2016)

  14. Ikpambese, K.; Gundu, D.; Tuleun, L.: Evaluation of palm kernel fibers (PKFs) for production of asbestos-free automotive brake pads. J. King Saud Univ. Eng. Sci. 28(1), 110–118 (2016)

  15. Ghazali, C.M.R.; Kamarudin, H.; Shamsul, J.; Abdullah, M.; Rafiza, A.: Mechanical properties and wear behavior of brake pads produced from palm slag. Adv. Mater. Res. 341, 26–30 (2012)

  16. Aku, S.; Yawas, D.; Madakson, P.; Amaren, S.: Characterization of periwinkle shell as asbestos-free brake pad materials. Pac. J. Sci. Technol. 13(2), 57–63 (2012)

  17. Öktem, H.; Uygur, İ.; Akıncıoğlu, G.; Kır, D.; Karakaş, H.: Evaluation of non-asbestos high performance brake pads produced with organic dusts. In: Paper Presented at the Metal 2015. Brno, Czech Republic, June 3rd–5th (2015)

  18. ISO 6312: Road vehicles–Brake Linings-Shear Test Procedure for Disc Brake Pad and Drum Brake Shoe Assemblies, vol. 3, pp. 1–11. ISO TC 22/SC 2/WG 2, Switzerland (2010)

  19. ASTM D570-98: Standard Test Method for Water Absorption of Plastics, pp. 1–4. ASTM International, United States (1999)

  20. Qi, S.; Fu, Z.; Yun, R.; Jiang, S.; Zheng, X.; Lu, Y.; Matejka, V.; Kukutschova, J.; Peknikova, V.; Prikasky, M.: Effects of walnut shells on friction and wear performance of eco-friendly brake friction composites. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 228(5), 511–520 (2014)

  21. Mutlu, I.; Oner, C.; Findik, F.: Boric acid effect in phenolic composites on tribological properties in brake linings. Mater. Des. 28(2), 480–487 (2007)

  22. Erikssona, M.; Lord, J.; Jacobson, S.: Wear and contact conditions of brake pads: dynamical in situ studies of pad on glass. Wear 249, 272–278 (2001)

  23. Maleque, M.; Atiqah, A.; Talib, R.; Zahurin, H.: New natural fibre reinforced aluminium composite for automotive brake pad. Int. J. Mech. Mater. Eng. 7(2), 166–170 (2012)

  24. Kumar, M.; Satapathy, B.K.; Patnaik, A.; Kolluri, D.K.; Tomar, B.S.: Evaluation of fade-recovery performance of hybrid friction composites based on ternary combination of ceramic-fibers, ceramic-whiskers, and aramid-fibers. J. Appl. Polym. Sci. 124(5), 3650–3661 (2012)

  25. Singh, T.; Patnaik, A.; Chauhan, R.: Optimization of tribological properties of cement kiln dust-filled brake pad using grey relation analysis. Mater. Des. 89, 1335–1342 (2016)

  26. Kachhap, R.K.; Satapathy, B.K.: Synergistic effect of tungsten disulfide and cenosphere combination on braking performance of composite friction materials. Mater. Des. 56, 368–378 (2014)

  27. Nagesh, S.N.; Siddaraju, C.; Prakash, S.V.; Ramesh, M.R.: Characterization of brake pads by variation in composition of friction materials. Procedia Mater. Sci. 5, 295–302 (2014)

  28. Milenković, P.D.; Jovanović, S.J.; Janković, A.S.; Milovanović, M.D.; Vitošević, N.D.; Đorđević, M.V.; Raičević, M.M.: The influence of brake pads thermal conductivity on passenger car brake system efficiency. Therm. Sci. 14(suppl.), 221–230 (2010)

  29. Chan, D.; Stachowiak, G.W.: Review of automotive brake friction materials. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 218(9), 953–966 (2004)

  30. Lee, K.; Barber, J.R.: Frictionally excited thermoelastic instability in automotive disk brakes. J. Tribol. 115(4), 607–614 (1993)

  31. Fu, Z.; Suo, B.; Yun, R.; Lu, Y.; Wang, H.; Qi, S.; Jiang, S.; Lu, Y.; Matejka, V.: Development of eco-friendly brake friction composites containing flax fibers. J. Reinf. Plast. Compos. 31(10), 681–689 (2012)

  32. Avtomobılskıh, O.P.T.I.O.; Prahom, Z.O.Z.U.I.; Indıjskega, I.: Friction and wear behaviour of ulexite and cashew in automotive brake pads. Materiali in tehnologije 49(5), 751–758 (2015)

  33. Xiao, X.; Yin, Y.; Bao, J.; Lu, L.; Feng, X.: Review on the friction and wear of brake materials. Adv. Mech. Eng. 8(5), 1687814016647300 (2016)

  34. Lagel, M.C.; Hai, L.; Pizzi, A.; Basso, M.C.; Delmotte, L.; Abdalla, S.; Zahed, A.; Al-Marzouki, F.M.: Automotive brake pads made with a bioresin matrix. Ind. Crops Prod. 85, 372–381 (2016)

  35. Kumar, M.; Bijwe, J.: Non-asbestos organic (NAO) friction composites: role of copper; its shape and amount. Wear 270(3), 269–280 (2011)

Guest Posts
*
*
* CAPTCHA
Submit